Proszę. Moglibyście mi to wytłumaczyć? Z góry dzięki!! Podkreśl liczby, które spełniają podany warunek. a 0,2 < x < 0,4 - 0,2;0,21;0,4;1/4;3/5 b 0,4 < x < 3/5 - 1/2;0,6;0,56;1/5;0,3 c 1/3 < x < 2/3 - 1/4;0,5;5/9;4/6;0,33 d -3 < x < -1,5 - -1; -3,1; -2; -1/4; -1,8 e -5 < x < -3,4 - -3; -4; -16/3; -3,4; -4,99 f -0,7 < x < -1/5 - -0,5; -3/4; -0,1; -3/5; -0,02 Answer
Zadanie ♥ esioona ♥Dzielniki liczby 24 które są dzielnikami liczby 60 Odpowiedz 0 ocen | na tak 0% 0 0 o 16:04 rozwiązań: 3 szkolnaZadaniaMatematyka Odpowiedzi (3) Herhor 1, 2, 3, 4, 6, 12 0 0 o 16:21 blocked np. 1,2,3,4,6,12,24 0 0 o 18:12 Lubiędelikatnedziewczyny:( 1,2,3,4,6,12 0 0 o 21:292 bo na końcu jest 0 (a możeby być 0,2,4,6,8) 4 bo 3 ostatnie cyfry (400) są podzielne przez 4. 5 bo na końcu jest 0 (a może być 5 lub 0) 10 bo na końcu jest 0 (bo na końcu musi być no najmniej jedno zero) 100 bo na końcu są 00 (bo na końcu muszą byc co najmniej dwa zera) fidget Użytkownik Posty: 221 Rejestracja: 23 cze 2011, o 22:17 Płeć: Mężczyzna Lokalizacja: dev/null Podziękował: 65 razy Dzielniki liczby Ile jest liczb naturalnych, które są dzielnikami liczby 10010? Wypisałem wszystkie dzielniki, ale to nie wszystko. Dlaczego? "Nie rozumiem logiki tego zadania." miodzio1988 Dzielniki liczby Post autor: miodzio1988 » 16 sty 2012, o 22:39 Musisz policzyc ile tych liczb jest fidget Użytkownik Posty: 221 Rejestracja: 23 cze 2011, o 22:17 Płeć: Mężczyzna Lokalizacja: dev/null Podziękował: 65 razy Dzielniki liczby Post autor: fidget » 16 sty 2012, o 22:50 2, 5, 7, 11, 13 -> 5 dzielników. Zadanie sugeruje jednak inną odpowiedź: 32. Ponadto użyta została liczba Newtona. Nie rozumiem sensu, logiki tego zadania. Nie potrafię przeczytać go ze zrozumieniem. szw1710 Dzielniki liczby Post autor: szw1710 » 16 sty 2012, o 22:53 No więc wyznacz wszystkie iloczyny tych dzielników. Podajesz tylko dzielniki pierwsze. Przykładowo 35 też jest dzielnikiem. Majeskas Użytkownik Posty: 1456 Rejestracja: 14 gru 2007, o 14:36 Płeć: Mężczyzna Lokalizacja: Warszawa Podziękował: 49 razy Pomógł: 198 razy Dzielniki liczby Post autor: Majeskas » 16 sty 2012, o 23:15 Jest znacznie prostszy sposób na obliczanie ilości dzielników danej liczby. Każda liczba naturalna ma jednoznaczny (z dokładnością do kolejności czynników) rozkład na czynniki pierwsze. \(\displaystyle{ n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_m^{\alpha_m}}\) Każdy dzielnik \(\displaystyle{ n}\) jest postaci \(\displaystyle{ p_1^{\beta_1}p_2^{\beta_2}\ldots p_m^{\beta_m}}\), gdzie \(\displaystyle{ \beta_i\in\left\{ 0,1,\ldots,\alpha_i\right\}}\) W takim razie dzielników jest tyle ile możliwych ustawień wykładników \(\displaystyle{ \beta_i}\): \(\displaystyle{ (\alpha_1+1)(\alpha_2+1)\ldots(\alpha_m+1)}\) szw1710 Dzielniki liczby Post autor: szw1710 » 16 sty 2012, o 23:16 Owszem. Jednak w sytuacji zmęczenia kij i młotek są najlepszymi narzędziami Dzielniki. 109. Wypisz wszystkie dzielniki naturalne liczb: a) 23 · 3, b) 152 . 110. Oblicz sumę wszystkich liczb pierwszych, które są dzielnikami liczby 330. 111. Suma dwóch liczb naturalnych wynosi 63, a ich największym wspólnym dzielnikiem jest 7. Jakie to liczby? Znajdź wszystkie możliwości. 112. viki90 Użytkownik Posty: 168 Rejestracja: 22 lut 2013, o 16:05 Płeć: Kobieta Lokalizacja: Polska Podziękował: 32 razy dzielniki zera Niech P będzie liczbą pierwszą. Obliczyć liczbę dzielników zera w pierścieniu: \(\displaystyle{ Z_{p^{2}}}\) ? yorgin Użytkownik Posty: 12762 Rejestracja: 14 paź 2006, o 12:09 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 17 razy Pomógł: 3440 razy dzielniki zera Post autor: yorgin » 8 mar 2013, o 14:56 Niech \(\displaystyle{ a,b\in \ZZ_{p^2}}\) takie, że\(\displaystyle{ ab=0}\). W szczególności \(\displaystyle{ ab
Tutaj mamy aż 4 dzielniki. Dzielnikami liczby 9 są liczby 1, 3 i 9. Tutaj mamy 3 dzielniki. A co z liczbą 10? Jej dzielnikami są liczby 1, 2, 5 i 10. Tutaj także mamy więcej niż dwa różne dzielniki. Spośród liczb od jednego do 10 wypisaliśmy tylko cztery liczby, które mają dokładnie dwa różne dzielniki. Są to liczby 2, 3, 5 i 7.
Aby wyznaczyć NWD dla liczb 14 i 42 musimy rozłożyć na czynniki pierwsze każdą z podanych liczb. Następnie wybieramy wszystkie powtórzenia czynników dla każdej liczby, a następnie je mnożymy. 14: 2 742: 237NWD: 2 7NWD dla liczb 14 i 42 to: 2 x 7 = 14 «Aby uzyskać kolejne rozwiązanie przejdź tutaj. 245 220 82 484 64 397 259 460